Экология как наука рассматривает си­стемы, звенья и члены которых находятся в тесной взаимосвязи и взаимозависимости. Из этого вытекает необходимость учета мно­жества факторов при анализе тех или иных экологических явлений и тем более при планировании любых вмешательств в экосисте­мы. Такой подход, в свою очередь, невозможен без комплексного метода изучения, оценки и решения тех или иных экологических задач. По этим же причинам очевидна тесная связь экологии с дру­гими науками, сведениями из которых необходимо не только распо­лагать, но и уметь их грамотно использовать. К таким наукам от­носятся: биология, география, почвоведение, гидрология, химия, физика и другие отрасли знаний. Важно также уметь пользоваться необходимой информацией из различных отраслей хозяйства и свой­ственных им технологических процессов.

Говоря о системных явлениях, важно познакомиться с видами систем, общими положениями теории систем. Обычно различают три вида систем: 1) изолированные, которые не обмениваются с соседними ни веществом, ни энергией, 2) закрытые, которые об­мениваются с соседними энергией, но не веществом (например, космический корабль), и 3) открытые, которые обмениваются с соседними и веществом, и энергией. Практически все природные (экологические) системы относятся к типу открытых.

Существование систем немыслимо без связей. Последние де­лят на прямые и обратные. Прямой называют такую связь, при которой один элемент (А) действует на другой (В) без ответной реакции. Примером такой связи может быть действие древесного яруса леса на случайно выросшее под его пологом травянистое растение или действие солнца на земные процессы. При обратной связи элемент В отвечает на действие элемента А. Обратные свя­зи бывают положительными и отрицательными. И те и другие играют существенную роль в экологических процессах и явлениях.

Положительная обратная связь ведет к усилению процесса в одном направлении. Пример ее - заболачивание территории, на­пример, после вырубки леса. Снятие лесного полога и уплотнение почвы обычно ведет к накоплению воды на ее поверхности. Это, в свою очередь, дает возможность поселяться здесь растениям-влагонакопителям, например сфагновым мхам, содержание воды в которых в 25-30 раз превышает вес их тела. Процесс начинает дей­ствовать в одном направлении: увеличение увлажнения - обедне­ние кислородом - замедление разложения растительных остатков - накопление торфа - дальнейшее усиление заболачивания.

Отрицательная обратная связь действует таким образом, что в ответ на усиление действия элемента А увеличивается противо­положная по направлению сила действия элемента В. Такая связь позволяет сохраняться системе в состоянии устойчивого динами­ческого равновесия. Это наиболее распространенный и важный вид связей в природных системах. На них прежде всего базируется устойчивость и стабильность экосистем. Пример такой связи - вза­имоотношение между хищником и его жертвой. Увеличение чис­ленности жертвы как кормового ресурса, например полевых мы­шей для лис, создает условия для размножения и увеличения чис­ленности последних. Они, в свою очередь, начинают более интен­сивно уничтожать жертву и снижают ее численность. В целом чис­ленность хищника и жертвы синхронно колеблется в определенных границах. Второй пример. В истории биосферы имели место явле­ния локального увеличения содержания углекислого газа в ат­мосфере, например, при извержении вулканов. За этим следовало повышение интенсивности фотосинтеза и связывание углекислоты в органическом веществе, а также более интенсивное поглощение ее океаном. Третий пример. В природе закономерны периодичес­кие повышения уровней почвенно-грунтовых вод. За этим следует увеличение их контакта с корневыми системами растений, повы­шение расходования на испарение растительностью (транспирацию) и возвращение уровней грунтовой воды в исходное состояние.

Одно из отрицательных проявлений деятельности человека в природе связано с нарушением этих связей, что может привести к разрушению экосистем или переходу их в другое состояние. На­пример, умеренное загрязнение водной среды органическими и био­генными (необходимыми для жизнедеятельности организмов) ве­ществами обычно сопровождается интенсификацией деятельнос­ти организмов, потребляющих эти вещества, результатом чего яв­ляется самоочищение водоемов. Перегрузка же среды загрязняю­щими веществами на определенном этапе ведет к угнетению или уничтожению организмов-санитаров, переводу установившихся обратных связей в прямые, переходу системы на другой уровень. В результате неизбежным становится прогрессирующее загрязне­ние, обеднение водной среды кислородом и превращение чистых озерных или текущих вод в системы болотного типа.

Универсальное свойство экосистем - их эмерджентность (англ. эмердженс - возникновение, появление нового), заключающееся в том, что свойства системы как целого не являются простой сум­мой свойств слагающих ее частей или элементов. Например, одно дерево, как и редкий древостой, не составляет леса, поскольку не создает определенной среды (почвенной, гидрологической, метео­рологической и т. д.) и свойственных лесу взаимосвязей различных звеньев, обусловливающих новое качество. Недоучет эмерджент-ности может приводить к крупным просчетам при вмешательстве человека в жизнь экосистем или при конструировании систем для выполнения определенных целей. Например, сельскохозяйственные поля (агроценозы) имеют низкий коэффициент эмерджентности и поэтому характеризуются крайне низкой способностью саморегу­лирования и устойчивости. В них, вследствие бедности видового состава организмов, крайне незначительны взаимосвязи, велика вероятность интенсивного размножения отдельных нежелательных видов (сорняков, вредителей).